일시 | Chapter | 발표자 | 발표자료 | 발표영상 |
2017-02-28 | 1. Intro to NLP and Deep Learning Simple Word Vector representations |
모경현 | 발표자료 | " target="_blank" rel="noopener">발표영상 |
2017-03-10 | 2. Advanced word vector representations | 박민식 | 발표자료 | " target="_blank" rel="noopener">발표영상 |
2017-03-24 | 3. Neural Networks and backpropagation | 조수현 | 발표자료 | " target="_blank" rel="noopener">발표영상 |
2017-03-31 | 4. Project Advice, Neural Networks and Back-Prop | 김동화 | 발표자료 | " target="_blank" rel="noopener">발표영상 |
2017-04-14 | 5. Practical tips | 김형석 | 발표자료 | |
Introduction to Tensorflow | Skip | |||
2017-04-21 | 6. Recurrent neural networks | 조수현 | 발표자료 | " target="_blank" rel="noopener">발표영상 |
2017-05-12 | 7. GRUs and LSTMs | 김해동 | 발표자료 | " target="_blank" rel="noopener">발표영상 |
2017-05-19 | 8. Recursive neural networks: for parsing | 이기창 | 발표자료 | " target="_blank" rel="noopener">발표영상 |
2017-05-26 | 9. Recursive neural networks: for different tasks (e.g. sentiment analysis) | 김창엽 | 발표자료 | " target="_blank" rel="noopener">발표영상 |
2017-06-02 | 10. Convolutional neural networks: for sentence classification | 이기창 | 발표자료 | " target="_blank" rel="noopener">발표영상 |
2017-06-23 | 11. Applications of DL to NLP | 김형석 |